Skip to main content

warming up

I still don't have all the parts I need to do what I need to do, but I started working with what I had around.

I had a 4-digit 7-segment led which I had ordered previously, but for the longest time I had thought I needed additional parts to make it work. It was only today that I realized that that was not the case.

Getting some help from this site, I was able to get the digits fired up:


This method uses way more wires than this guy (which uses a serial communications protocol called I^2C), but it's good to see it work. I still do want to try the less-wire led setup, as I would like to try playing around with I^2C.


In addition, I had recently purchased an Arduino Pro Mini, which contains all the capabilities of the above Arduino Uno but requires pins/connections to be soldered into the board. I had attempted to solder one part of it (the serial/USB connections) a few days ago (note that this was my first attempt ever at soldering), and the USB-to-Serial interface arrived today, making me try it out. Fortunately, it appears my first soldering work is a success.




I purchased a new coil of solder (63% Tin, 37% Lead) as I realized that the solder I'm using (non-lead, 99.3% tin) is not the best kind of solder for electronics. Let's see if the new solder helps me struggle less with soldering.

Anyways, I am hopeful that this will be the main device that will drive this project.


Comments

Popular posts from this blog

dabbling with cylon

I'm playing around with Cylon JS whenever I have the time. in order to use the leap motion for control, the hand control will need to communicate with the pc that is connected to the leap motion device (leap motion does not provide an arm/linux driver). it seems that Cylon devices can communicate with each other through socket.io or http, and I am currently playing around with that.

interfacing alcohol sensor with the led

Programmed the Arduino to have the alcohol sensor play with the LED display. I had the display show either "open" or "lock" depending on the alcohol sensor level. Here is the result: Notice that this has a very notable flaw with respect to its potential use as a "breathalyzer lock": it stays "open" as long as there is alcohol present, which only then "lock"s. This means that currently, if you leave it alone (no breathing into it), it will keep the device unlocked. This is something I will have to resolve. code used for this: int del = 5000; int gasPin = 0; int value = 0; int lastValue = 0; void setup(){ //  Serial.begin(9600);   pinMode(12, OUTPUT);   pinMode(11, OUTPUT);   pinMode(10, OUTPUT);   pinMode(9, OUTPUT);   pinMode(8, OUTPUT);   pinMode(7, OUTPUT);   pinMode(6, OUTPUT);   pinMode(5, OUTPUT);   pinMode(4, OUTPUT);   pinMode(3, OUTPUT);   pinMode(2, OUTPUT);   pinMode(1, OUTPUT);...

alcohol sensor (and some patience)

Soldered the alcohol sensor into something that is connectable: I tried to connect this to the Arduino, as I had the appropriate circuitry, but I did not get any legitimate output from it. 5V going in, 5V coming out with no variations. Nothing seems to be awry in wiring, as the circuit seems to be grounded properly (and the 5V current is flowing).  There are a couple of potential factors as to why I'm not seeing any results: - I'm using a 10k ohm resistor, while some guides (and the datasheet for the sensor) asks for 100-200k. However, there seems to be a good amount of people using 10k and getting at least some kind of result. A batch of 100k ohm resistors I ordered is on its way, so I guess I can try with them when they come. - This site  claims that these sensors take 24-48 hours for its signals to be stable. It also tells me that I should not be powering the sensor directly from the Arduino, which I have been doing, out of concern that the power draw of ...